1 /**
2  * Identify the characteristics of the host CPU, providing information
3  * about cache sizes and assembly optimisation hints. This module is
4  * provided primarily for assembly language programmers.
5  *
6  * References:
7  * Some of this information was extremely difficult to track down. Some of the
8  * documents below were found only in cached versions stored by search engines!
9  * This code relies on information found in:
10  *
11  * $(UL
12  * $(LI "Intel(R) 64 and IA-32 Architectures Software Developers Manual,
13  *    Volume 2A: Instruction Set Reference, A-M" (2007).
14  * )
15  * $(LI "AMD CPUID Specification", Advanced Micro Devices, Rev 2.28 (2008).
16  * )
17  * $(LI "AMD Processor Recognition Application Note For Processors Prior to AMD
18  *    Family 0Fh Processors", Advanced Micro Devices, Rev 3.13 (2005).
19  * )
20  * $(LI "AMD Geode(TM) GX Processors Data Book",
21  *    Advanced Micro Devices, Publication ID 31505E, (2005).
22  * )
23  * $(LI "AMD K6 Processor Code Optimisation", Advanced Micro Devices, Rev D (2000).
24  * )
25  * $(LI "Application note 106: Software Customization for the 6x86 Family",
26  *    Cyrix Corporation, Rev 1.5 (1998)
27  * )
28  * $(LI $(LINK http://www.datasheetcatalog.org/datasheet/nationalsemiconductor/GX1.pdf))
29  * $(LI "Geode(TM) GX1 Processor Series Low Power Integrated X86 Solution",
30  *   National Semiconductor, (2002)
31  * )
32  * $(LI "The VIA Isaiah Architecture", G. Glenn Henry, Centaur Technology, Inc (2008).
33  * )
34  * $(LI $(LINK http://www.sandpile.org/ia32/cpuid.htm))
35  * $(LI $(LINK http://www.akkadia.org/drepper/cpumemory.pdf))
36  * $(LI "What every programmer should know about memory",
37  *    Ulrich Depper, Red Hat, Inc., (2007).
38  * )
39  * $(LI "CPU Identification by the Windows Kernel", G. Chappell (2009).
40  *   $(LINK http://www.geoffchappell.com/viewer.htm?doc=studies/windows/km/cpu/cx8.htm)
41  * )
42  * $(LI "Intel(R) Processor Identification and the CPUID Instruction, Application
43  *    Note 485" (2009).
44  * )
45  * )
46  *
47  * Bugs: Currently only works on x86 and Itanium CPUs.
48  *      Many processors have bugs in their microcode for the CPUID instruction,
49  *      so sometimes the cache information may be incorrect.
50  *
51  * Copyright: Copyright Don Clugston 2007 - 2009.
52  * License:   $(LINK2 http://www.boost.org/LICENSE_1_0.txt, Boost License 1.0)
53  * Authors:   Don Clugston, Tomas Lindquist Olsen <tomas@famolsen.dk>
54  * Source:    $(DRUNTIMESRC core/_cpuid.d)
55  */
56 
57 module core.cpuid;
58 
59 version (GNU) version = GNU_OR_LDC;
60 version (LDC) version = GNU_OR_LDC;
61 
62 @trusted:
63 nothrow:
64 @nogc:
65 
66 // If optimizing for a particular processor, it is generally better
67 // to identify based on features rather than model. NOTE: Normally
68 // it's only worthwhile to optimise for the latest Intel and AMD CPU,
69 // with a backup for other CPUs.
70 // Pentium    -- preferPentium1()
71 // PMMX       --   + mmx()
72 // PPro       -- default
73 // PII        --   + mmx()
74 // PIII       --   + mmx() + sse()
75 // PentiumM   --   + mmx() + sse() + sse2()
76 // Pentium4   -- preferPentium4()
77 // PentiumD   --   + isX86_64()
78 // Core2      -- default + isX86_64()
79 // AMD K5     -- preferPentium1()
80 // AMD K6     --   + mmx()
81 // AMD K6-II  --   + mmx() + 3dnow()
82 // AMD K7     -- preferAthlon()
83 // AMD K8     --   + sse2()
84 // AMD K10    --   + isX86_64()
85 // Cyrix 6x86 -- preferPentium1()
86 //    6x86MX  --   + mmx()
87 
88 // GDC support uses extended inline assembly:
89 //   https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html        (general information and hints)
90 //   https://gcc.gnu.org/onlinedocs/gcc/Simple-Constraints.html  (binding variables to registers)
91 //   https://gcc.gnu.org/onlinedocs/gcc/Machine-Constraints.html (x86 specific register short names)
92 
93 public:
94 
95 /// Cache size and behaviour
96 struct CacheInfo
97 {
98     /// Size of the cache, in kilobytes, per CPU.
99     /// For L1 unified (data + code) caches, this size is half the physical size.
100     /// (we don't halve it for larger sizes, since normally
101     /// data size is much greater than code size for critical loops).
102     size_t size;
103     /// Number of ways of associativity, eg:
104     /// $(UL
105     /// $(LI 1 = direct mapped)
106     /// $(LI 2 = 2-way set associative)
107     /// $(LI 3 = 3-way set associative)
108     /// $(LI ubyte.max = fully associative)
109     /// )
110     ubyte associativity;
111     /// Number of bytes read into the cache when a cache miss occurs.
112     uint lineSize;
113 }
114 
115 public:
116     /// $(RED Scheduled for deprecation. Please use $(D dataCaches) instead.)
117     // Note: When we deprecate it, we simply make it private.
118     __gshared CacheInfo[5] datacache;
119 
120 @property pure
121 {
122     /// The data caches. If there are fewer than 5 physical caches levels,
123     /// the remaining levels are set to size_t.max (== entire memory space)
124     const(CacheInfo)[5] dataCaches() { return _dataCaches; }
125 
126     /// Returns vendor string, for display purposes only.
127     /// Do NOT use this to determine features!
128     /// Note that some CPUs have programmable vendorIDs.
129     string vendor()     {return _vendor;}
130     /// Returns processor string, for display purposes only
131     string processor()  {return _processor;}
132 
133     /// Does it have an x87 FPU on-chip?
134     bool x87onChip()    {return _x87onChip;}
135     /// Is MMX supported?
136     bool mmx()          {return _mmx;}
137     /// Is SSE supported?
138     bool sse()          {return _sse;}
139     /// Is SSE2 supported?
140     bool sse2()         {return _sse2;}
141     /// Is SSE3 supported?
142     bool sse3()         {return _sse3;}
143     /// Is SSSE3 supported?
144     bool ssse3()         {return _ssse3;}
145     /// Is SSE4.1 supported?
146     bool sse41()        {return _sse41;}
147     /// Is SSE4.2 supported?
148     bool sse42()        {return _sse42;}
149     /// Is SSE4a supported?
150     bool sse4a()        {return _sse4a;}
151     /// Is AES supported
152     bool aes()          {return _aes;}
153     /// Is pclmulqdq supported
154     bool hasPclmulqdq() {return _hasPclmulqdq;}
155     /// Is rdrand supported
156     bool hasRdrand()    {return _hasRdrand;}
157     /// Is AVX supported
158     bool avx()          {return _avx;}
159     /// Is VEX-Encoded AES supported
160     bool vaes()         {return _vaes;}
161     /// Is vpclmulqdq supported
162     bool hasVpclmulqdq(){return _hasVpclmulqdq; }
163     /// Is FMA supported
164     bool fma()          {return _fma;}
165     /// Is FP16C supported
166     bool fp16c()        {return _fp16c;}
167     /// Is AVX2 supported
168     bool avx2()         {return _avx2;}
169     /// Is HLE (hardware lock elision) supported
170     bool hle()          {return _hle;}
171     /// Is RTM (restricted transactional memory) supported
172     bool rtm()          {return _rtm;}
173     /// Is AVX512F supported
174     bool avx512f()      {return _avx512f;}
175     /// Is rdseed supported
176     bool hasRdseed()    {return _hasRdseed;}
177     /// Is SHA supported
178     bool hasSha()       {return _hasSha;}
179     /// Is AMD 3DNOW supported?
180     bool amd3dnow()     {return _amd3dnow;}
181     /// Is AMD 3DNOW Ext supported?
182     bool amd3dnowExt()  {return _amd3dnowExt;}
183     /// Are AMD extensions to MMX supported?
184     bool amdMmx()       {return _amdMmx;}
185     /// Is fxsave/fxrstor supported?
186     bool hasFxsr()          {return _hasFxsr;}
187     /// Is cmov supported?
188     bool hasCmov()          {return _hasCmov;}
189     /// Is rdtsc supported?
190     bool hasRdtsc()         {return _hasRdtsc;}
191     /// Is cmpxchg8b supported?
192     bool hasCmpxchg8b()     {return _hasCmpxchg8b;}
193     /// Is cmpxchg8b supported?
194     bool hasCmpxchg16b()    {return _hasCmpxchg16b;}
195     /// Is SYSENTER/SYSEXIT supported?
196     bool hasSysEnterSysExit() {return _hasSysEnterSysExit;}
197     /// Is 3DNow prefetch supported?
198     bool has3dnowPrefetch()   {return _has3dnowPrefetch;}
199     /// Are LAHF and SAHF supported in 64-bit mode?
200     bool hasLahfSahf()        {return _hasLahfSahf;}
201     /// Is POPCNT supported?
202     bool hasPopcnt()        {return _hasPopcnt;}
203     /// Is LZCNT supported?
204     bool hasLzcnt()         {return _hasLzcnt;}
205     /// Is this an Intel64 or AMD 64?
206     bool isX86_64()         {return _isX86_64;}
207 
208     /// Is this an IA64 (Itanium) processor?
209     bool isItanium()        { return _isItanium; }
210 
211     /// Is hyperthreading supported?
212     bool hyperThreading()   { return _hyperThreading; }
213     /// Returns number of threads per CPU
214     uint threadsPerCPU()    {return _threadsPerCPU;}
215     /// Returns number of cores in CPU
216     uint coresPerCPU()      {return _coresPerCPU;}
217 
218     /// Optimisation hints for assembly code.
219     ///
220     /// For forward compatibility, the CPU is compared against different
221     /// microarchitectures. For 32-bit x86, comparisons are made against
222     /// the Intel PPro/PII/PIII/PM family.
223     ///
224     /// The major 32-bit x86 microarchitecture 'dynasties' have been:
225     ///
226     /// $(UL
227     /// $(LI Intel P6 (PentiumPro, PII, PIII, PM, Core, Core2). )
228     /// $(LI AMD Athlon (K7, K8, K10). )
229     /// $(LI Intel NetBurst (Pentium 4, Pentium D). )
230     /// $(LI In-order Pentium (Pentium1, PMMX, Atom) )
231     /// )
232     ///
233     /// Other early CPUs (Nx586, AMD K5, K6, Centaur C3, Transmeta,
234     /// Cyrix, Rise) were mostly in-order.
235     ///
236     /// Some new processors do not fit into the existing categories:
237     ///
238     /// $(UL
239     /// $(LI Intel Atom 230/330 (family 6, model 0x1C) is an in-order core. )
240     /// $(LI Centaur Isiah = VIA Nano (family 6, model F) is an out-of-order core. )
241     /// )
242     ///
243     /// Within each dynasty, the optimisation techniques are largely
244     /// identical (eg, use instruction pairing for group 4). Major
245     /// instruction set improvements occur within each dynasty.
246 
247     /// Does this CPU perform better on AMD K7 code than PentiumPro..Core2 code?
248     bool preferAthlon() { return _preferAthlon; }
249     /// Does this CPU perform better on Pentium4 code than PentiumPro..Core2 code?
250     bool preferPentium4() { return _preferPentium4; }
251     /// Does this CPU perform better on Pentium I code than Pentium Pro code?
252     bool preferPentium1() { return _preferPentium1; }
253 }
254 
255 private immutable
256 {
257     /* These exist as immutables so that the query property functions can
258      * be backwards compatible with code that called them with ().
259      * Also, immutables can only be set by the static this().
260      */
261     const(CacheInfo)[5] _dataCaches;
262     string _vendor;
263     string _processor;
264     bool _x87onChip;
265     bool _mmx;
266     bool _sse;
267     bool _sse2;
268     bool _sse3;
269     bool _ssse3;
270     bool _sse41;
271     bool _sse42;
272     bool _sse4a;
273     bool _aes;
274     bool _hasPclmulqdq;
275     bool _hasRdrand;
276     bool _avx;
277     bool _vaes;
278     bool _hasVpclmulqdq;
279     bool _fma;
280     bool _fp16c;
281     bool _avx2;
282     bool _hle;
283     bool _rtm;
284     bool _avx512f;
285     bool _hasRdseed;
286     bool _hasSha;
287     bool _amd3dnow;
288     bool _amd3dnowExt;
289     bool _amdMmx;
290     bool _hasFxsr;
291     bool _hasCmov;
292     bool _hasRdtsc;
293     bool _hasCmpxchg8b;
294     bool _hasCmpxchg16b;
295     bool _hasSysEnterSysExit;
296     bool _has3dnowPrefetch;
297     bool _hasLahfSahf;
298     bool _hasPopcnt;
299     bool _hasLzcnt;
300     bool _isX86_64;
301     bool _isItanium;
302     bool _hyperThreading;
303     uint _threadsPerCPU;
304     uint _coresPerCPU;
305     bool _preferAthlon;
306     bool _preferPentium4;
307     bool _preferPentium1;
308 }
309 
310 __gshared:
311     // All these values are set only once, and never subsequently modified.
312 public:
313     /// $(RED Warning: This field will be turned into a property in a future release.)
314     ///
315     /// Processor type (vendor-dependent).
316     /// This should be visible ONLY for display purposes.
317     uint stepping, model, family;
318     /// $(RED This field has been deprecated. Please use $(D cacheLevels) instead.)
319     uint numCacheLevels = 1;
320     /// The number of cache levels in the CPU.
321     @property uint cacheLevels() { return numCacheLevels; }
322 private:
323 
324 struct CpuFeatures
325 {
326     bool probablyIntel; // true = _probably_ an Intel processor, might be faking
327     bool probablyAMD; // true = _probably_ an AMD or Hygon processor
328     string processorName;
329     char [12] vendorID = 0;
330     char [48] processorNameBuffer = 0;
331     uint features = 0;     // mmx, sse, sse2, hyperthreading, etc
332     uint miscfeatures = 0; // sse3, etc.
333     uint extfeatures = 0;  // HLE, AVX2, RTM, etc.
334     uint amdfeatures = 0;  // 3DNow!, mmxext, etc
335     uint amdmiscfeatures = 0; // sse4a, sse5, svm, etc
336     ulong xfeatures = 0;   // XFEATURES_ENABLED_MASK
337     uint maxCores = 1;
338     uint maxThreads = 1;
339 }
340 
341 CpuFeatures cpuFeatures;
342 
343 /* Hide from the optimizer where cf (a register) is coming from, so that
344  * cf doesn't get "optimized away". The idea is to  reference
345  * the global data through cf so not so many fixups are inserted
346  * into the executable image.
347  */
348 CpuFeatures* getCpuFeatures() @nogc nothrow
349 {
350     pragma(inline, false);
351     return &cpuFeatures;
352 }
353 
354     // Note that this may indicate multi-core rather than hyperthreading.
355     @property bool hyperThreadingBit()    { return (cpuFeatures.features&HTT_BIT)!=0;}
356 
357     // feature flags CPUID1_EDX
358     enum : uint
359     {
360         FPU_BIT = 1,
361         TIMESTAMP_BIT = 1<<4, // rdtsc
362         MDSR_BIT = 1<<5,      // RDMSR/WRMSR
363         CMPXCHG8B_BIT = 1<<8,
364         SYSENTERSYSEXIT_BIT = 1<<11,
365         CMOV_BIT = 1<<15,
366         MMX_BIT = 1<<23,
367         FXSR_BIT = 1<<24,
368         SSE_BIT = 1<<25,
369         SSE2_BIT = 1<<26,
370         HTT_BIT = 1<<28,
371         IA64_BIT = 1<<30
372     }
373     // feature flags misc CPUID1_ECX
374     enum : uint
375     {
376         SSE3_BIT = 1,
377         PCLMULQDQ_BIT = 1<<1, // from AVX
378         MWAIT_BIT = 1<<3,
379         SSSE3_BIT = 1<<9,
380         FMA_BIT = 1<<12,     // from AVX
381         CMPXCHG16B_BIT = 1<<13,
382         SSE41_BIT = 1<<19,
383         SSE42_BIT = 1<<20,
384         POPCNT_BIT = 1<<23,
385         AES_BIT = 1<<25, // AES instructions from AVX
386         OSXSAVE_BIT = 1<<27, // Used for AVX
387         AVX_BIT = 1<<28,
388         FP16C_BIT = 1<<29,
389         RDRAND_BIT = 1<<30,
390     }
391     // Feature flags for cpuid.{EAX = 7, ECX = 0}.EBX.
392     enum : uint
393     {
394         FSGSBASE_BIT = 1 << 0,
395         SGX_BIT = 1 << 2,
396         BMI1_BIT = 1 << 3,
397         HLE_BIT = 1 << 4,
398         AVX2_BIT = 1 << 5,
399         SMEP_BIT = 1 << 7,
400         BMI2_BIT = 1 << 8,
401         ERMS_BIT = 1 << 9,
402         INVPCID_BIT = 1 << 10,
403         RTM_BIT = 1 << 11,
404         AVX512F_BIT = 1 << 16,
405         AVX512DQ_BIT = 1 << 17,
406         RDSEED_BIT = 1 << 18,
407         ADX_BIT = 1 << 19,
408         AVX512IFMA_BIT = 1 << 21,
409         CLFLUSHOPT_BIT = 1 << 23,
410         CLWB_BIT = 1 << 24,
411         AVX512PF_BIT = 1 << 26,
412         AVX512ER_BIT = 1 << 27,
413         AVX512CD_BIT = 1 << 28,
414         SHA_BIT = 1 << 29,
415         AVX512BW_BIT = 1 << 30,
416         AVX512VL_BIT = 1 << 31,
417     }
418     // feature flags XFEATURES_ENABLED_MASK
419     enum : ulong
420     {
421         XF_FP_BIT  = 0x1,
422         XF_SSE_BIT = 0x2,
423         XF_YMM_BIT = 0x4,
424     }
425     // AMD feature flags CPUID80000001_EDX
426     enum : uint
427     {
428         AMD_MMX_BIT = 1<<22,
429 //      FXR_OR_CYRIXMMX_BIT = 1<<24, // Cyrix/NS: 6x86MMX instructions.
430         FFXSR_BIT = 1<<25,
431         PAGE1GB_BIT = 1<<26, // support for 1GB pages
432         RDTSCP_BIT = 1<<27,
433         AMD64_BIT = 1<<29,
434         AMD_3DNOW_EXT_BIT = 1<<30,
435         AMD_3DNOW_BIT = 1<<31
436     }
437     // AMD misc feature flags CPUID80000001_ECX
438     enum : uint
439     {
440         LAHFSAHF_BIT = 1,
441         LZCNT_BIT = 1<<5,
442         SSE4A_BIT = 1<<6,
443         AMD_3DNOW_PREFETCH_BIT = 1<<8,
444     }
445 
446 
447 version (GNU_OR_LDC) {
448     version (X86)
449         enum supportedX86 = true;
450     else version (X86_64)
451         enum supportedX86 = true;
452     else
453         enum supportedX86 = false;
454 } else version (D_InlineAsm_X86) {
455     enum supportedX86 = true;
456 } else version (D_InlineAsm_X86_64) {
457     enum supportedX86 = true;
458 } else {
459     enum supportedX86 = false;
460 }
461 
462 static if (supportedX86) {
463 // Note that this code will also work for Itanium in x86 mode.
464 
465 __gshared uint max_cpuid, max_extended_cpuid;
466 
467 // CPUID2: "cache and tlb information"
468 void getcacheinfoCPUID2()
469 {
470     // We are only interested in the data caches
471     void decipherCpuid2(ubyte x) @nogc nothrow {
472         if (x==0) return;
473         // Values from http://www.sandpile.org/ia32/cpuid.htm.
474         // Includes Itanium and non-Intel CPUs.
475         //
476         static immutable ubyte [63] ids = [
477             0x0A, 0x0C, 0x0D, 0x2C, 0x60, 0x0E, 0x66, 0x67, 0x68,
478             // level 2 cache
479             0x41, 0x42, 0x43, 0x44, 0x45, 0x78, 0x79, 0x7A, 0x7B, 0x7C, 0x7D, 0x7F,
480             0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x49, 0x4E,
481             0x39, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E, 0x48, 0x80, 0x81,
482             // level 3 cache
483             0x22, 0x23, 0x25, 0x29, 0x46, 0x47, 0x4A, 0x4B, 0x4C, 0x4D,
484 
485             0xD0, 0xD1, 0xD2, 0xD6, 0xD7, 0xD8, 0xDC, 0xDD, 0xDE,
486             0xE2, 0xE3, 0xE4, 0xEA, 0xEB, 0xEC
487         ];
488         static immutable uint [63] sizes = [
489             8, 16, 16, 64, 16, 24, 8, 16, 32,
490             128, 256, 512, 1024, 2048, 1024, 128, 256, 512, 1024, 2048, 512,
491             256, 512, 1024, 2048, 512, 1024, 4096, 6*1024,
492             128, 192, 128, 256, 384, 512, 3072, 512, 128,
493             512, 1024, 2048, 4096, 4096, 8192, 6*1024, 8192, 12*1024, 16*1024,
494 
495             512, 1024, 2048, 1024, 2048, 4096, 1024+512, 3*1024, 6*1024,
496             2*1024, 4*1024, 8*1024, 12*1024, 28*1024, 24*1024
497         ];
498     // CPUBUG: Pentium M reports 0x2C but tests show it is only 4-way associative
499         static immutable ubyte [63] ways = [
500             2, 4, 4, 8, 8, 6, 4, 4, 4,
501             4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 2,
502             8, 8, 8, 8, 4, 8, 16, 24,
503             4, 6, 2, 4, 6, 4, 12, 8, 8,
504             4, 8, 8, 8, 4, 8, 12, 16, 12, 16,
505             4, 4, 4, 8, 8, 8, 12, 12, 12,
506             16, 16, 16, 24, 24, 24
507         ];
508         enum { FIRSTDATA2 = 8, FIRSTDATA3 = 28+9 }
509         for (size_t i=0; i< ids.length; ++i) {
510             if (x==ids[i]) {
511                 int level = i< FIRSTDATA2 ? 0: i<FIRSTDATA3 ? 1 : 2;
512                 if (x==0x49 && family==0xF && model==0x6) level=2;
513                 datacache[level].size=sizes[i];
514                 datacache[level].associativity=ways[i];
515                 if (level == 3 || x==0x2C || x==0x0D || (x>=0x48 && x<=0x80)
516                                    || x==0x86 || x==0x87
517                                    || (x>=0x66 && x<=0x68) || (x>=0x39 && x<=0x3E)){
518                     datacache[level].lineSize = 64;
519                 } else datacache[level].lineSize = 32;
520             }
521         }
522     }
523 
524     uint[4] a;
525     bool firstTime = true;
526     // On a multi-core system, this could theoretically fail, but it's only used
527     // for old single-core CPUs.
528     uint numinfos = 1;
529     do {
530         version (GNU_OR_LDC) asm pure nothrow @nogc {
531             "cpuid" : "=a" (a[0]), "=b" (a[1]), "=c" (a[2]), "=d" (a[3]) : "a" (2);
532         } else asm pure nothrow @nogc {
533             mov EAX, 2;
534             cpuid;
535             mov a+0, EAX;
536             mov a+4, EBX;
537             mov a+8, ECX;
538             mov a+12, EDX;
539         }
540         if (firstTime) {
541             if (a[0]==0x0000_7001 && a[3]==0x80 && a[1]==0 && a[2]==0) {
542         // Cyrix MediaGX MMXEnhanced returns: EAX= 00007001, EDX=00000080.
543         // These are NOT standard Intel values
544         // (TLB = 32 entry, 4 way associative, 4K pages)
545         // (L1 cache = 16K, 4way, linesize16)
546                 datacache[0].size=8;
547                 datacache[0].associativity=4;
548                 datacache[0].lineSize=16;
549                 return;
550             }
551             // lsb of a is how many times to loop.
552             numinfos = a[0] & 0xFF;
553             // and otherwise it should be ignored
554             a[0] &= 0xFFFF_FF00;
555             firstTime = false;
556         }
557         for (int c=0; c<4;++c) {
558             // high bit set == no info.
559             if (a[c] & 0x8000_0000) continue;
560             decipherCpuid2(cast(ubyte)(a[c] & 0xFF));
561             decipherCpuid2(cast(ubyte)((a[c]>>8) & 0xFF));
562             decipherCpuid2(cast(ubyte)((a[c]>>16) & 0xFF));
563             decipherCpuid2(cast(ubyte)((a[c]>>24) & 0xFF));
564         }
565     } while (--numinfos);
566 }
567 
568 // CPUID4: "Deterministic cache parameters" leaf
569 void getcacheinfoCPUID4()
570 {
571     int cachenum = 0;
572     for (;;) {
573         uint a, b, number_of_sets;
574         version (GNU_OR_LDC) asm pure nothrow @nogc {
575             "cpuid" : "=a" (a), "=b" (b), "=c" (number_of_sets) : "a" (4), "c" (cachenum) : "edx";
576         } else asm pure nothrow @nogc {
577             mov EAX, 4;
578             mov ECX, cachenum;
579             cpuid;
580             mov a, EAX;
581             mov b, EBX;
582             mov number_of_sets, ECX;
583         }
584         ++cachenum;
585         if ((a&0x1F)==0) break; // no more caches
586         immutable uint numthreads = ((a>>14) & 0xFFF)  + 1;
587         immutable uint numcores = ((a>>26) & 0x3F) + 1;
588         if (numcores > cpuFeatures.maxCores) cpuFeatures.maxCores = numcores;
589         if ((a&0x1F)!=1 && ((a&0x1F)!=3)) continue; // we only want data & unified caches
590 
591         ++number_of_sets;
592         immutable ubyte level = cast(ubyte)(((a>>5)&7)-1);
593         if (level > datacache.length) continue; // ignore deep caches
594         datacache[level].associativity = a & 0x200 ? ubyte.max :cast(ubyte)((b>>22)+1);
595         datacache[level].lineSize = (b & 0xFFF)+ 1; // system coherency line size
596         immutable uint line_partitions = ((b >> 12)& 0x3FF) + 1;
597         // Size = number of sets * associativity * cachelinesize * linepartitions
598         // and must convert to Kb, also dividing by the number of hyperthreads using this cache.
599         immutable ulong sz = (datacache[level].associativity< ubyte.max)? number_of_sets *
600             datacache[level].associativity : number_of_sets;
601         datacache[level].size = cast(size_t)(
602                 (sz * datacache[level].lineSize * line_partitions ) / (numthreads *1024));
603         if (level == 0 && (a&0xF)==3) {
604             // Halve the size for unified L1 caches
605             datacache[level].size/=2;
606         }
607     }
608 }
609 
610 // CPUID8000_0005 & 6
611 void getAMDcacheinfo()
612 {
613     uint dummy, c5, c6, d6;
614     version (GNU_OR_LDC) asm pure nothrow @nogc {
615         "cpuid" : "=a" (dummy), "=c" (c5) : "a" (0x8000_0005) : "ebx", "edx";
616     } else asm pure nothrow @nogc {
617         mov EAX, 0x8000_0005; // L1 cache
618         cpuid;
619         // EAX has L1_TLB_4M.
620         // EBX has L1_TLB_4K
621         // EDX has L1 instruction cache
622         mov c5, ECX;
623     }
624 
625     datacache[0].size = ( (c5>>24) & 0xFF);
626     datacache[0].associativity = cast(ubyte)( (c5 >> 16) & 0xFF);
627     datacache[0].lineSize = c5 & 0xFF;
628 
629     if (max_extended_cpuid >= 0x8000_0006) {
630         // AMD K6-III or K6-2+ or later.
631         ubyte numcores = 1;
632         if (max_extended_cpuid >= 0x8000_0008) {
633             version (GNU_OR_LDC) asm pure nothrow @nogc {
634                 "cpuid" : "=a" (dummy), "=c" (numcores) : "a" (0x8000_0008) : "ebx", "edx";
635             } else asm pure nothrow @nogc {
636                 mov EAX, 0x8000_0008;
637                 cpuid;
638                 mov numcores, CL;
639             }
640             ++numcores;
641             if (numcores>cpuFeatures.maxCores) cpuFeatures.maxCores = numcores;
642         }
643 
644         version (GNU_OR_LDC) asm pure nothrow @nogc {
645             "cpuid" : "=a" (dummy), "=c" (c6), "=d" (d6) : "a" (0x8000_0006) : "ebx";
646         } else asm pure nothrow @nogc {
647             mov EAX, 0x8000_0006; // L2/L3 cache
648             cpuid;
649             mov c6, ECX; // L2 cache info
650             mov d6, EDX; // L3 cache info
651         }
652 
653         static immutable ubyte [] assocmap = [ 0, 1, 2, 0, 4, 0, 8, 0, 16, 0, 32, 48, 64, 96, 128, 0xFF ];
654         datacache[1].size = (c6>>16) & 0xFFFF;
655         datacache[1].associativity = assocmap[(c6>>12)&0xF];
656         datacache[1].lineSize = c6 & 0xFF;
657 
658         // The L3 cache value is TOTAL, not per core.
659         datacache[2].size = ((d6>>18)*512)/numcores; // could be up to 2 * this, -1.
660         datacache[2].associativity = assocmap[(d6>>12)&0xF];
661         datacache[2].lineSize = d6 & 0xFF;
662     }
663 }
664 
665 // For Intel CoreI7 and later, use function 0x0B
666 // to determine number of processors.
667 void getCpuInfo0B()
668 {
669     int level=0;
670     int threadsPerCore;
671     uint a, b, c, d;
672     do {
673         version (GNU_OR_LDC) asm pure nothrow @nogc {
674             "cpuid" : "=a" (a), "=b" (b), "=c" (c), "=d" (d) : "a" (0x0B), "c" (level);
675         } else asm pure nothrow @nogc {
676             mov EAX, 0x0B;
677             mov ECX, level;
678             cpuid;
679             mov a, EAX;
680             mov b, EBX;
681             mov c, ECX;
682             mov d, EDX;
683         }
684         if (b!=0) {
685            // I'm not sure about this. The docs state that there
686            // are 2 hyperthreads per core if HT is factory enabled.
687             if (level==0)
688                 threadsPerCore = b & 0xFFFF;
689             else if (level==1) {
690                 cpuFeatures.maxThreads = b & 0xFFFF;
691                 cpuFeatures.maxCores = cpuFeatures.maxThreads / threadsPerCore;
692             }
693 
694         }
695         ++level;
696     } while (a!=0 || b!=0);
697 }
698 
699 void cpuidX86()
700 {
701     auto cf = getCpuFeatures();
702 
703     uint a, b, c, d;
704     uint* venptr = cast(uint*)cf.vendorID.ptr;
705     version (GNU_OR_LDC)
706     {
707         asm pure nothrow @nogc {
708             "cpuid" : "=a" (max_cpuid), "=b" (venptr[0]), "=d" (venptr[1]), "=c" (venptr[2]) : "a" (0);
709             "cpuid" : "=a" (max_extended_cpuid) : "a" (0x8000_0000) : "ebx", "ecx", "edx";
710         }
711     }
712     else
713     {
714         uint a2;
715         version (D_InlineAsm_X86)
716         {
717             asm pure nothrow @nogc {
718                 mov EAX, 0;
719                 cpuid;
720                 mov a, EAX;
721                 mov EAX, venptr;
722                 mov [EAX], EBX;
723                 mov [EAX + 4], EDX;
724                 mov [EAX + 8], ECX;
725             }
726         }
727         else version (D_InlineAsm_X86_64)
728         {
729             asm pure nothrow @nogc {
730                 mov EAX, 0;
731                 cpuid;
732                 mov a, EAX;
733                 mov RAX, venptr;
734                 mov [RAX], EBX;
735                 mov [RAX + 4], EDX;
736                 mov [RAX + 8], ECX;
737             }
738         }
739         asm pure nothrow @nogc {
740             mov EAX, 0x8000_0000;
741             cpuid;
742             mov a2, EAX;
743         }
744         max_cpuid = a;
745         max_extended_cpuid = a2;
746     }
747 
748 
749     cf.probablyIntel = cf.vendorID == "GenuineIntel";
750     cf.probablyAMD = (cf.vendorID == "AuthenticAMD" || cf.vendorID == "HygonGenuine");
751     uint apic = 0; // brand index, apic id
752     version (GNU_OR_LDC) asm pure nothrow @nogc {
753         "cpuid" : "=a" (a), "=b" (apic), "=c" (cf.miscfeatures), "=d" (cf.features) : "a" (1);
754     } else {
755         asm pure nothrow @nogc {
756             mov EAX, 1; // model, stepping
757             cpuid;
758             mov a, EAX;
759             mov apic, EBX;
760             mov c, ECX;
761             mov d, EDX;
762         }
763         cf.features = d;
764         cf.miscfeatures = c;
765     }
766     stepping = a & 0xF;
767     immutable uint fbase = (a >> 8) & 0xF;
768     immutable uint mbase = (a >> 4) & 0xF;
769     family = ((fbase == 0xF) || (fbase == 0)) ? fbase + (a >> 20) & 0xFF : fbase;
770     model = ((fbase == 0xF) || (fbase == 6 && cf.probablyIntel) ) ?
771          mbase + ((a >> 12) & 0xF0) : mbase;
772 
773     if (max_cpuid >= 7)
774     {
775         version (GNU_OR_LDC) asm pure nothrow @nogc {
776             "cpuid" : "=a" (a), "=b" (cf.extfeatures), "=c" (c) : "a" (7), "c" (0) : "edx";
777         } else {
778             uint ext;
779             asm pure nothrow @nogc {
780                 mov EAX, 7; // Structured extended feature leaf.
781                 mov ECX, 0; // Main leaf.
782                 cpuid;
783                 mov ext, EBX; // HLE, AVX2, RTM, etc.
784             }
785             cf.extfeatures = ext;
786         }
787     }
788 
789     if (cf.miscfeatures & OSXSAVE_BIT)
790     {
791         version (GNU_OR_LDC) asm pure nothrow @nogc {
792             /* Old assemblers do not recognize xgetbv, and there is no easy way
793              * to conditionally compile based on the assembler used, so use the
794              * raw .byte sequence instead.  */
795             ".byte 0x0f, 0x01, 0xd0" : "=a" (a), "=d" (d) : "c" (0);
796         } else asm pure nothrow @nogc {
797             mov ECX, 0;
798             xgetbv;
799             mov d, EDX;
800             mov a, EAX;
801         }
802         cf.xfeatures = cast(ulong)d << 32 | a;
803     }
804 
805     cf.amdfeatures = 0;
806     cf.amdmiscfeatures = 0;
807     if (max_extended_cpuid >= 0x8000_0001) {
808         version (GNU_OR_LDC) asm pure nothrow @nogc {
809             "cpuid" : "=a" (a), "=c" (cf.amdmiscfeatures), "=d" (cf.amdfeatures) : "a" (0x8000_0001) : "ebx";
810         } else {
811             asm pure nothrow @nogc {
812                 mov EAX, 0x8000_0001;
813                 cpuid;
814                 mov c, ECX;
815                 mov d, EDX;
816             }
817             cf.amdmiscfeatures = c;
818             cf.amdfeatures = d;
819         }
820     }
821     // Try to detect fraudulent vendorIDs
822     if (amd3dnow) cf.probablyIntel = false;
823 
824     if (!cf.probablyIntel && max_extended_cpuid >= 0x8000_0008) {
825         //http://support.amd.com/TechDocs/25481.pdf pg.36
826         cf.maxCores = 1;
827         if (hyperThreadingBit) {
828             // determine max number of cores for AMD
829             version (GNU_OR_LDC) asm pure nothrow @nogc {
830                 "cpuid" : "=a" (a), "=c" (c) : "a" (0x8000_0008) : "ebx", "edx";
831             } else asm pure nothrow @nogc {
832                 mov EAX, 0x8000_0008;
833                 cpuid;
834                 mov c, ECX;
835             }
836             cf.maxCores += c & 0xFF;
837         }
838     }
839 
840     if (max_extended_cpuid >= 0x8000_0004) {
841         uint* pnb = cast(uint*)cf.processorNameBuffer.ptr;
842         version (GNU_OR_LDC)
843         {
844             asm pure nothrow @nogc {
845                 "cpuid" : "=a" (pnb[0]), "=b" (pnb[1]), "=c" (pnb[ 2]), "=d" (pnb[ 3]) : "a" (0x8000_0002);
846                 "cpuid" : "=a" (pnb[4]), "=b" (pnb[5]), "=c" (pnb[ 6]), "=d" (pnb[ 7]) : "a" (0x8000_0003);
847                 "cpuid" : "=a" (pnb[8]), "=b" (pnb[9]), "=c" (pnb[10]), "=d" (pnb[11]) : "a" (0x8000_0004);
848             }
849         }
850         else version (D_InlineAsm_X86)
851         {
852             asm pure nothrow @nogc {
853                 push ESI;
854                 mov ESI, pnb;
855                 mov EAX, 0x8000_0002;
856                 cpuid;
857                 mov [ESI], EAX;
858                 mov [ESI+4], EBX;
859                 mov [ESI+8], ECX;
860                 mov [ESI+12], EDX;
861                 mov EAX, 0x8000_0003;
862                 cpuid;
863                 mov [ESI+16], EAX;
864                 mov [ESI+20], EBX;
865                 mov [ESI+24], ECX;
866                 mov [ESI+28], EDX;
867                 mov EAX, 0x8000_0004;
868                 cpuid;
869                 mov [ESI+32], EAX;
870                 mov [ESI+36], EBX;
871                 mov [ESI+40], ECX;
872                 mov [ESI+44], EDX;
873                 pop ESI;
874             }
875         }
876         else version (D_InlineAsm_X86_64)
877         {
878             asm pure nothrow @nogc {
879                 push RSI;
880                 mov RSI, pnb;
881                 mov EAX, 0x8000_0002;
882                 cpuid;
883                 mov [RSI], EAX;
884                 mov [RSI+4], EBX;
885                 mov [RSI+8], ECX;
886                 mov [RSI+12], EDX;
887                 mov EAX, 0x8000_0003;
888                 cpuid;
889                 mov [RSI+16], EAX;
890                 mov [RSI+20], EBX;
891                 mov [RSI+24], ECX;
892                 mov [RSI+28], EDX;
893                 mov EAX, 0x8000_0004;
894                 cpuid;
895                 mov [RSI+32], EAX;
896                 mov [RSI+36], EBX;
897                 mov [RSI+40], ECX;
898                 mov [RSI+44], EDX;
899                 pop RSI;
900             }
901         }
902         // Intel P4 and PM pad at front with spaces.
903         // Other CPUs pad at end with nulls.
904         int start = 0, end = 0;
905         while (cf.processorNameBuffer[start] == ' ') { ++start; }
906         while (cf.processorNameBuffer[cf.processorNameBuffer.length-end-1] == 0) { ++end; }
907         cf.processorName = cast(string)(cf.processorNameBuffer[start..$-end]);
908     } else {
909         cf.processorName = "Unknown CPU";
910     }
911     // Determine cache sizes
912 
913     // Intel docs specify that they return 0 for 0x8000_0005.
914     // AMD docs do not specify the behaviour for 0004 and 0002.
915     // Centaur/VIA and most other manufacturers use the AMD method,
916     // except Cyrix MediaGX MMX Enhanced uses their OWN form of CPUID2!
917     // NS Geode GX1 provides CyrixCPUID2 _and_ does the same wrong behaviour
918     // for CPUID80000005. But Geode GX uses the AMD method
919 
920     // Deal with Geode GX1 - make it same as MediaGX MMX.
921     if (max_extended_cpuid==0x8000_0005 && max_cpuid==2) {
922         max_extended_cpuid = 0x8000_0004;
923     }
924     // Therefore, we try the AMD method unless it's an Intel chip.
925     // If we still have no info, try the Intel methods.
926     datacache[0].size = 0;
927     if (max_cpuid<2 || !cf.probablyIntel) {
928         if (max_extended_cpuid >= 0x8000_0005) {
929             getAMDcacheinfo();
930         } else if (cf.probablyAMD) {
931             // According to AMDProcRecognitionAppNote, this means CPU
932             // K5 model 0, or Am5x86 (model 4), or Am4x86DX4 (model 4)
933             // Am5x86 has 16Kb 4-way unified data & code cache.
934             datacache[0].size = 8;
935             datacache[0].associativity = 4;
936             datacache[0].lineSize = 32;
937         } else {
938             // Some obscure CPU.
939             // Values for Cyrix 6x86MX (family 6, model 0)
940             datacache[0].size = 64;
941             datacache[0].associativity = 4;
942             datacache[0].lineSize = 32;
943         }
944     }
945     if ((datacache[0].size == 0) && max_cpuid>=4) {
946         getcacheinfoCPUID4();
947     }
948     if ((datacache[0].size == 0) && max_cpuid>=2) {
949         getcacheinfoCPUID2();
950     }
951     if (datacache[0].size == 0) {
952         // Pentium, PMMX, late model 486, or an obscure CPU
953         if (mmx) { // Pentium MMX. Also has 8kB code cache.
954             datacache[0].size = 16;
955             datacache[0].associativity = 4;
956             datacache[0].lineSize = 32;
957         } else { // Pentium 1 (which also has 8kB code cache)
958                  // or 486.
959             // Cyrix 6x86: 16, 4way, 32 linesize
960             datacache[0].size = 8;
961             datacache[0].associativity = 2;
962             datacache[0].lineSize = 32;
963         }
964     }
965     if (cf.probablyIntel && max_cpuid >= 0x0B) {
966         // For Intel i7 and later, use function 0x0B to determine
967         // cores and hyperthreads.
968         getCpuInfo0B();
969     } else {
970         if (hyperThreadingBit) cf.maxThreads = (apic>>>16) & 0xFF;
971         else cf.maxThreads = cf.maxCores;
972 
973         if (cf.probablyAMD && max_extended_cpuid >= 0x8000_001E) {
974             version (GNU_OR_LDC) asm pure nothrow @nogc {
975                 "cpuid" : "=a" (a), "=b" (b) : "a" (0x8000_001E) : "ecx", "edx";
976             } else {
977                 asm pure nothrow @nogc {
978                     mov EAX, 0x8000_001e;
979                     cpuid;
980                     mov b, EBX;
981                 }
982             }
983             ubyte coresPerComputeUnit = ((b >> 8) & 3) + 1;
984             cf.maxCores = cf.maxThreads / coresPerComputeUnit;
985         }
986     }
987 }
988 
989 // Return true if the cpuid instruction is supported.
990 // BUG(WONTFIX): Returns false for Cyrix 6x86 and 6x86L. They will be treated as 486 machines.
991 bool hasCPUID()
992 {
993     version (X86_64)
994         return true;
995     else
996     {
997         uint flags;
998         version (GNU_OR_LDC)
999         {
1000             // http://wiki.osdev.org/CPUID#Checking_CPUID_availability
1001             asm nothrow @nogc { "
1002                 pushfl                    # Save EFLAGS
1003                 pushfl                    # Store EFLAGS
1004                 xorl $0x00200000, (%%esp) # Invert the ID bit in stored EFLAGS
1005                 popfl                     # Load stored EFLAGS (with ID bit inverted)
1006                 pushfl                    # Store EFLAGS again (ID bit may or may not be inverted)
1007                 popl %%eax                # eax = modified EFLAGS (ID bit may or may not be inverted)
1008                 xorl (%%esp), %%eax       # eax = whichever bits were changed
1009                 popfl                     # Restore original EFLAGS
1010                 " : "=a" (flags);
1011             }
1012         }
1013         else version (D_InlineAsm_X86)
1014         {
1015             asm nothrow @nogc {
1016                 pushfd;
1017                 pop EAX;
1018                 mov flags, EAX;
1019                 xor EAX, 0x0020_0000;
1020                 push EAX;
1021                 popfd;
1022                 pushfd;
1023                 pop EAX;
1024                 xor flags, EAX;
1025             }
1026         }
1027         return (flags & 0x0020_0000) != 0;
1028     }
1029 }
1030 
1031 } else { // supported X86
1032 
1033     bool hasCPUID() { return false; }
1034 
1035     void cpuidX86()
1036     {
1037             datacache[0].size = 8;
1038             datacache[0].associativity = 2;
1039             datacache[0].lineSize = 32;
1040     }
1041 }
1042 
1043 /*
1044 // TODO: Implement this function with OS support
1045 void cpuidPPC()
1046 {
1047     enum :int  { PPC601, PPC603, PPC603E, PPC604,
1048                  PPC604E, PPC620, PPCG3, PPCG4, PPCG5 }
1049 
1050     // TODO:
1051     // asm { mfpvr; } returns the CPU version but unfortunately it can
1052     // only be used in kernel mode. So OS support is required.
1053     int cputype = PPC603;
1054 
1055     // 601 has a 8KB combined data & code L1 cache.
1056     uint sizes[] = [4, 8, 16, 16, 32, 32, 32, 32, 64];
1057     ubyte ways[] = [8, 2,  4,  4,  4,  8,  8,  8,  8];
1058     uint L2size[]= [0, 0,  0,  0,  0,  0,  0,  256,  512];
1059     uint L3size[]= [0, 0,  0,  0,  0,  0,  0,  2048,  0];
1060 
1061     datacache[0].size = sizes[cputype];
1062     datacache[0].associativity = ways[cputype];
1063     datacache[0].lineSize = (cputype==PPCG5)? 128 :
1064         (cputype == PPC620 || cputype == PPCG3)? 64 : 32;
1065     datacache[1].size = L2size[cputype];
1066     datacache[2].size = L3size[cputype];
1067     datacache[1].lineSize = datacache[0].lineSize;
1068     datacache[2].lineSize = datacache[0].lineSize;
1069 }
1070 
1071 // TODO: Implement this function with OS support
1072 void cpuidSparc()
1073 {
1074     // UltaSparcIIi  : L1 = 16,  2way. L2 = 512, 4 way.
1075     // UltraSparcIII : L1 = 64,  4way. L2= 4096 or 8192.
1076     // UltraSparcIIIi: L1 = 64,  4way. L2= 1024, 4 way
1077     // UltraSparcIV  : L1 = 64,  4way. L2 = 16*1024.
1078     // UltraSparcIV+ : L1 = 64,  4way. L2 = 2048, L3=32*1024.
1079     // Sparc64V      : L1 = 128, 2way. L2 = 4096 4way.
1080 }
1081 */
1082 
1083 pragma(crt_constructor) void cpuid_initialization()
1084 {
1085     auto cf = getCpuFeatures();
1086 
1087     if (hasCPUID()) {
1088         cpuidX86();
1089     } else {
1090         // it's a 386 or 486, or a Cyrix 6x86.
1091         //Probably still has an external cache.
1092     }
1093     if (datacache[0].size==0) {
1094             // Guess same as Pentium 1.
1095             datacache[0].size = 8;
1096             datacache[0].associativity = 2;
1097             datacache[0].lineSize = 32;
1098     }
1099     numCacheLevels = 1;
1100     // And now fill up all the unused levels with full memory space.
1101     for (size_t i=1; i< datacache.length; ++i) {
1102         if (datacache[i].size==0) {
1103             // Set all remaining levels of cache equal to full address space.
1104             datacache[i].size = size_t.max/1024;
1105             datacache[i].associativity = 1;
1106             datacache[i].lineSize = datacache[i-1].lineSize;
1107         }
1108         else
1109             ++numCacheLevels;
1110     }
1111 
1112     // Set the immortals
1113 
1114     _dataCaches =     datacache;
1115     _vendor =         cast(string)cf.vendorID;
1116     _processor =      cf.processorName;
1117     _x87onChip =      (cf.features&FPU_BIT)!=0;
1118     _mmx =            (cf.features&MMX_BIT)!=0;
1119     _sse =            (cf.features&SSE_BIT)!=0;
1120     _sse2 =           (cf.features&SSE2_BIT)!=0;
1121     _sse3 =           (cf.miscfeatures&SSE3_BIT)!=0;
1122     _ssse3 =          (cf.miscfeatures&SSSE3_BIT)!=0;
1123     _sse41 =          (cf.miscfeatures&SSE41_BIT)!=0;
1124     _sse42 =          (cf.miscfeatures&SSE42_BIT)!=0;
1125     _sse4a =          (cf.amdmiscfeatures&SSE4A_BIT)!=0;
1126     _aes =            (cf.miscfeatures&AES_BIT)!=0;
1127     _hasPclmulqdq =   (cf.miscfeatures&PCLMULQDQ_BIT)!=0;
1128     _hasRdrand =      (cf.miscfeatures&RDRAND_BIT)!=0;
1129 
1130     enum avx_mask = XF_SSE_BIT|XF_YMM_BIT;
1131     _avx =            (cf.xfeatures & avx_mask) == avx_mask && (cf.miscfeatures&AVX_BIT)!=0;
1132 
1133     _vaes =           avx && aes;
1134     _hasVpclmulqdq =  avx && hasPclmulqdq;
1135     _fma =            avx && (cf.miscfeatures&FMA_BIT)!=0;
1136     _fp16c =          avx && (cf.miscfeatures&FP16C_BIT)!=0;
1137     _avx2 =           avx && (cf.extfeatures & AVX2_BIT) != 0;
1138     _hle =            (cf.extfeatures & HLE_BIT) != 0;
1139     _rtm =            (cf.extfeatures & RTM_BIT) != 0;
1140     _avx512f =        (cf.extfeatures & AVX512F_BIT) != 0;
1141     _hasRdseed =      (cf.extfeatures&RDSEED_BIT)!=0;
1142     _hasSha =         (cf.extfeatures&SHA_BIT)!=0;
1143     _amd3dnow =       (cf.amdfeatures&AMD_3DNOW_BIT)!=0;
1144     _amd3dnowExt =    (cf.amdfeatures&AMD_3DNOW_EXT_BIT)!=0;
1145     _amdMmx =         (cf.amdfeatures&AMD_MMX_BIT)!=0;
1146     _hasFxsr =        (cf.features&FXSR_BIT)!=0;
1147     _hasCmov =        (cf.features&CMOV_BIT)!=0;
1148     _hasRdtsc =       (cf.features&TIMESTAMP_BIT)!=0;
1149     _hasCmpxchg8b =   (cf.features&CMPXCHG8B_BIT)!=0;
1150     _hasCmpxchg16b =  (cf.miscfeatures&CMPXCHG16B_BIT)!=0;
1151     _hasSysEnterSysExit =
1152         // The SYSENTER/SYSEXIT features were buggy on Pentium Pro and early PentiumII.
1153         // (REF: www.geoffchappell.com).
1154         (cf.probablyIntel && (family < 6 || (family==6 && (model< 3 || (model==3 && stepping<3)))))
1155             ? false
1156             : (cf.features & SYSENTERSYSEXIT_BIT)!=0;
1157     _has3dnowPrefetch = (cf.amdmiscfeatures&AMD_3DNOW_PREFETCH_BIT)!=0;
1158     _hasLahfSahf =    (cf.amdmiscfeatures&LAHFSAHF_BIT)!=0;
1159     _hasPopcnt =      (cf.miscfeatures&POPCNT_BIT)!=0;
1160     _hasLzcnt =       (cf.amdmiscfeatures&LZCNT_BIT)!=0;
1161     _isX86_64 =       (cf.amdfeatures&AMD64_BIT)!=0;
1162     _isItanium =      (cf.features&IA64_BIT)!=0;
1163     _hyperThreading = cf.maxThreads>cf.maxCores;
1164     _threadsPerCPU =  cf.maxThreads;
1165     _coresPerCPU =    cf.maxCores;
1166     _preferAthlon =   cf.probablyAMD && family >=6;
1167     _preferPentium4 = cf.probablyIntel && family == 0xF;
1168     _preferPentium1 = family < 6 || (family==6 && model < 0xF && !cf.probablyIntel);
1169 }